If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-22a-1=0
a = 1; b = -22; c = -1;
Δ = b2-4ac
Δ = -222-4·1·(-1)
Δ = 488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{488}=\sqrt{4*122}=\sqrt{4}*\sqrt{122}=2\sqrt{122}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{122}}{2*1}=\frac{22-2\sqrt{122}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{122}}{2*1}=\frac{22+2\sqrt{122}}{2} $
| 2/6x-6/2x=4/8 | | X=150+-y | | 2x-3=+6 | | x-51/6=10 | | -x-5=3x+27 | | 5p+3+7p-31=12p-28 | | 8n+10+18n=23 | | 7x+16-4=180 | | x+x+24=189.5 | | 4(u+3)=5u-3u | | 45=p=60 | | 4/9=f/6 | | 3(3x-1)+4(9-3x)=0 | | -6m+2/3=9+2/3 | | 4(7x-8)+16=6(4x-2)-4 | | z-11=21 | | 5q+2q=49 | | 4/3=x/10 | | -6m+2/3=92/3 | | -3=6-q=3 | | 0.8x-1/5=-1/2 | | 15/39=x/26 | | 7-x+3=10 | | 11/12z=1/6 | | 4(8x-1=3(4-2÷3) | | 12t-15=2t-7=5t+32 | | x=2(x+3)(x-3) | | 7x+5x=3(x+2) | | -5/4=3x/10 | | 360=6x-25 | | y=4-3(-4/4) | | (x+5)+(2x=10)=90 |